
Performance evaluation of Q-learning and

SARSA(λ) on Taxi ride problem

Monika Ahirwar CS17M025

Madhura Pande CS17S031

Course Instructor: Dr. L.A. Prashanth

Department of Computer Science and Engineering

Indian Institute of Technology, Madras



Introduction - Reinforcement Learning

Reinforcement Learning(RL) algorithms are widely used to solve

problems where an agent needs to interact with an unknown

environment and form strategies to maximize the reward.

Q-Learning and SARSA (State Action Reward State Action) are two

such algorithms which can work with real world environments and

help the agent learn smarter strategies.

Figure 1: A typical RL setting

1



The Problem

We have a 5x5 grid world inhabited by a taxi agent. There are 4

locations (marked R,G,B,Y) from where passengers can be picked up

and dropped as well.

There are rewards and penalties for taking various actions, as

imposed by the environment. The agent has to learn the best way to

maximize reward.

Figure 2: Taxi Environment

2



The Problem : Underlying MDP!

States - We need to keep track of taxi’s location, passenger’s

location and intended destination. State space spans across 500

states (5x5x5x4).

Actions - Six actions are as follows :-

Move North

Move South

Move East

Move West

Pickup passenger

Drop passenger

3



The Problem : Underlying MDP!

Rewards

There is a -1 reward for each step taken.

Agent gets +20 for a successful drop-off.

-10 for an illegal drop-off, if agent drops the passenger at some

random location.

Hitting a wall, is same as taking a step incurring a penalty of 1 point.

Episode - We consider the series of actions taken from the point

when passenger is picked, till he is dropped as one Episode.

4



Our Aim

We aim to build agents who take policies based on random actions;

by following SARSA(λ) and Q-Learning algorithms and compare

their performances.

We also propose a little enhancement in standard Q-Learning

method, to better handle exploration-exploitation dilemma

conditioned on this environment. We call this agent Smart

Q-Learning Agent.

5



Our Aim

We aim to optimize the following values and compare it within

various agents.

Average number of penalties per episode

Average number of timesteps per episode

Average reward per episode

Episodes taken for learning phase

6



State-Action-Reward-State-Action aka SARSA(λ)

TD (λ) learns from experience, without a model of any kind

TD learns from incomplete episodes by bootstrapping

The drawback is that it evaluates only state values but we need

control as well

In SARSA (λ) is applying TD(λ) prediction method to state - action

pairs rather than to states

7



State-Action-Reward-State-Action aka SARSA(λ)

First choose A
′

from S
′

using policy derived from Q (ε - greedy)

and update δ

δ = R + γQ(S
′
,A

′
) − Q(S ,A)

Eligibility trace is traced: E (S ,A) = E (S ,A) + 1

For all s-a pairs update Q and E as follows:

Q(s, a) = Q(s, a) + αδE (s, a)

E (s, a) = γλE (s, a)

8



Performance of SARSA(λ)

Figure 3: SARSA in 500 iterations
9



Performance of SARSA(λ)

Figure 4: SARSA in 100000 iterations
10



Observations: SARSA(λ)

Optimal λ is tuned to be as 0.9

Changing ε of ε-greedy policy has significant effect on average

rewards

Decay factor of 0.99975 worked best

After 100000, average time step per episode is 15.27 and average

rewards per episode is 8.37

11



Q-Learning

Simulation variant of Value Iteration.

The update equation.

Q(s, a) = Q(s, a) + α(R + γmax
′

a Q(s
′
, a

′
) − Q(s, a))

Q-Learning is an off-policy algorithm and uses ε-greedy strategy to

choose actions.

We simulate a large number of episodes so that agent learns about

the environment, and keeps the information in Q-Table.

Each entry of the Q-Table tells the ”quality” of action in a particular

state.

12



Smart Q-Learning

The hyper parameters in the update equation were tuned to

maximize reward via multiple experiments.

Parameter ε was observed to influence the results most, as it controls

the exploration-exploitation tradeoff, especially in the training phase.

Grid search technique was used select the best set of parameters.

13



Smart Q-Learning: Exploration-Exploitation Dilemma

Q-Learning agent faces the vexed Exploration-Exploitation Dilemma,

when trying to learn Q-values from the environment.

ε-greedy strategy is used widely for this.

We decay epsilon after every episode if the episodic reward is greater

than the average reward, biasing the agent more towards

exploitation.

This has drastic effect on convergence rate of the algorithm, thereby

on the number of episodes needed to train the agent.

14



Q-Learning: Results

Figure 5: Reward v/s Episode for Q-Learning agent for first 500 episodes of

training

15



Q-Learning: Results

Figure 6: Reward v/s Episode for smart Q-Learning agent for first 500

episodes of training

16



Q-Learning: Results

Figure 7: Results

We observed with Smart Q-Learning agent, the Q-Table stabilized

within very less iterations as compared to its usual counterpart.

The average reward/score obtained per episode is 8.4, averaged over

100 episodes. 17



Future Work

Hierarchical Reinforcement Algorithms can be applied to this

problem because of its inherent structure. This problem originally

was introduced for hierarchical RL setting by Dietterich[2000] [2].

There is still scope of even finer tuning of parameters to get higher

reward value.

18



References

An Introduction. Second edition, in progress. Richard S. Sutton and

Andrew G. Barto c 2014, 2015. A Bradford Book. The MIT Press.

Cambridge, Massachusetts.

T. G. Dietterich. Hierarchical reinforcement learning with the maxq

value function decomposition. Journal of Artificial Intelligence

Research, 13:227 303, 2000.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming.

Athena Scientific, 1996.

Implementation References:
https://gym.openai.com/envs/Taxi-v2/,
https://gym.openai.com/evaluations/eval_
9xUnOhbTkWuZyHDD9NpuQ/,
https://github.com/VakhrameevaLiza,
https://www.learndatasci.com/tutorials/

19

https://gym.openai.com/envs/Taxi-v2/
https://gym.openai.com/evaluations/eval_9xUnOhbTkWuZyHDD9NpuQ/
https://gym.openai.com/evaluations/eval_9xUnOhbTkWuZyHDD9NpuQ/
https://github.com/VakhrameevaLiza
https://www.learndatasci.com/tutorials/


Thank You

20


