Performance evaluation of Q-learning and
SARSA()) on Taxi ride problem

Monika Ahirwar CS17M025
Madhura Pande CS17S031
Course Instructor: Dr. L.A. Prashanth

Department of Computer Science and Engineering
Indian Institute of Technology, Madras



Introduction - Reinforcement Learning

m Reinforcement Learning(RL) algorithms are widely used to solve
problems where an agent needs to interact with an unknown
environment and form strategies to maximize the reward.

m Q-Learning and SARSA (State Action Reward State Action) are two
such algorithms which can work with real world environments and

help the agent learn smarter strategies.

state
S

reward
R,

R
‘oS | Environment [e———

action
A

Figure 1: A typical RL setting



The Problem

m We have a 5x5 grid world inhabited by a taxi agent. There are 4
locations (marked R,G,B,Y) from where passengers can be picked up
and dropped as well.

m There are rewards and penalties for taking various actions, as
imposed by the environment. The agent has to learn the best way to
maximize reward.

Figure 2: Taxi Environment



The Problem : Underlying MDP!

m States - We need to keep track of taxi's location, passenger’s
location and intended destination. State space spans across 500
states (5x5x5x4).

m Actions - Six actions are as follows :-

Move North

Move South

Move East

Move West

Pickup passenger

Drop passenger



The Problem : Underlying MDP!

m Rewards
m There is a -1 reward for each step taken.
m Agent gets +20 for a successful drop-off.

m -10 for an illegal drop-off, if agent drops the passenger at some
random location.

m Hitting a wall, is same as taking a step incurring a penalty of 1 point.
m Episode - We consider the series of actions taken from the point
when passenger is picked, till he is dropped as one Episode.



m We aim to build agents who take policies based on random actions;
by following SARSA(X) and Q-Learning algorithms and compare
their performances.

m We also propose a little enhancement in standard Q-Learning
method, to better handle exploration-exploitation dilemma
conditioned on this environment. We call this agent Smart
Q-Learning Agent.



m We aim to optimize the following values and compare it within
various agents.
m Average number of penalties per episode
m Average number of timesteps per episode
m Average reward per episode
m Episodes taken for learning phase



State-Action-Reward-State-Action aka SARSA()\)

m TD () learns from experience, without a model of any kind
m TD learns from incomplete episodes by bootstrapping

m The drawback is that it evaluates only state values but we need
control as well

m In SARSA () is applying TD(X) prediction method to state - action
pairs rather than to states



State-Action-Reward-State-Action aka SARSA()\)

m First choose A from S’ using policy derived from Q (€ - greedy)
and update 0
§=R+~vQ(S,A) — Q(S,A)
m Eligibility trace is traced: E(S,A) = E(S,A) +1
m For all s-a pairs update Q and E as follows:
Q(s,a) = Q(s,a) + adE(s, a)
E(s,a) = y\E(s, a)



Performance of SARSA()\)

SARSA lambda

-400

-500

Reward per episode

—800

a 100 200 300 400 500
Episodes

Figure 3: SARSA in 500 iterations



Performance of SARSA()\)

SARSA lambda

-400

Reward per episode

-500

a 20000 40000 60000 80000 100000
Episodes

Figure 4: SARSA in 100000 iterations



Observations: SARSA())

m Optimal A is tuned to be as 0.9

m Changing ¢ of e-greedy policy has significant effect on average
rewards

m Decay factor of 0.99975 worked best

m After 100000, average time step per episode is 15.27 and average
rewards per episode is 8.37

11



m Simulation variant of Value lteration.

m The update equation.
Q(s,a) = Q(s,a) + a(R +~ymax, Q(s,a ) — Q(s, a))

m Q-Learning is an off-policy algorithm and uses e-greedy strategy to
choose actions.

m We simulate a large number of episodes so that agent learns about
the environment, and keeps the information in Q-Table.

m Each entry of the Q-Table tells the "quality” of action in a particular
state.

12



Smart Q-Learning

m The hyper parameters in the update equation were tuned to
maximize reward via multiple experiments.

m Parameter € was observed to influence the results most, as it controls
the exploration-exploitation tradeoff, especially in the training phase.

m Grid search technique was used select the best set of parameters.

13



Smart Q-Learning: Exploration-Exploitation Dilemma

m Q-Learning agent faces the vexed Exploration-Exploitation Dilemma,
when trying to learn Q-values from the environment.

m c-greedy strategy is used widely for this.

m We decay epsilon after every episode if the episodic reward is greater
than the average reward, biasing the agent more towards
exploitation.

m This has drastic effect on convergence rate of the algorithm, thereby
on the number of episodes needed to train the agent.

14



Q-Learning: Results

Q-Agent Training

77777

rrrrr

nnnnnnn

Figure 5: Reward v/s Episode for Q-Learning agent for first 500 episodes of
training

15



Q-Learning: Results

Smart Q-Agent Training

ooooo

;;;;;;

nnnnn

rrrrr

sssssss

Figure 6: Reward v/s Episode for smart Q-Learning agent for first 500
episodes of training



Q-Learning: Results

Average penalt

Starting to train Q-Agent, takes some time...
Training done.

Q-Agent's performance
Results a

Average tinesteps pet 12.
Average penalties pPr episode: 0.0

Starting to train smart Q-Agent, takes some time...
Training done.

Figure 7: Results

m We observed with Smart Q-Learning agent, the Q-Table stabilized
within very less iterations as compared to its usual counterpart.
m The average reward/score obtained per episode is 8.4, averaged over
100 episodes. 17



m Hierarchical Reinforcement Algorithms can be applied to this
problem because of its inherent structure. This problem originally
was introduced for hierarchical RL setting by Dietterich[2000] [2].

m There is still scope of even finer tuning of parameters to get higher

reward value.

18



References

@ An Introduction. Second edition, in progress. Richard S. Sutton and
Andrew G. Barto c 2014, 2015. A Bradford Book. The MIT Press.
Cambridge, Massachusetts.

[d T. G. Dietterich. Hierarchical reinforcement learning with the maxq
value function decomposition. Journal of Artificial Intelligence
Research, 13:227 303, 2000.

[§ D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, 1996.

El Implementation References:
https://gym.openai.com/envs/Taxi-v2/,
https://gym.openai.com/evaluations/eval_
9xUnOhbTkWuZyHDDONpuQ/,
https://github.com/Vakhrameevaliza,
https://www.learndatasci.com/tutorials/

19


https://gym.openai.com/envs/Taxi-v2/
https://gym.openai.com/evaluations/eval_9xUnOhbTkWuZyHDD9NpuQ/
https://gym.openai.com/evaluations/eval_9xUnOhbTkWuZyHDD9NpuQ/
https://github.com/VakhrameevaLiza
https://www.learndatasci.com/tutorials/

Thank You

20



